
Remote Access Multi-mission Processing and Analysis
Ground Environment (RAMPAGE)

Young H. Lee
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91 109

Younrr.H.Lee@,ipl.nasa.gov
8 18-354- 1326

Abstract-
At Jet Propulsion Laboratory (JPL), a goal of providing
easy and simple data access to the mission engineering
data using web-based standards to a wide variety of users is
now possible by the RAMPAGE development. Because
RAMPAGE provides platform independence by utilizing a
freely available web browser instead of a special purpose
workstation, a myriad of users are able to participate in
multiple missions from any location via a virtual
workstation environment. The first stage of RAMPAGE
prototype was envisioned and developed while supporting
the Galileo project and then to be followed by Deep Space
1 DS1) and Cassini project. The plan is to deploy the
production system of RAMPAGE to support Mars 01
orbiter, Lander and Rover project, which is to be launched
around March and April 200 1 . Discussions are also
ongoing to deploy RAMPAGE to the Space InfraRed
Telescope Facility (SIRTF) project which is to be launched
December 200 1 .

1 .

2.

3.

4.

5.

6.

7.

TABLE OF CONTENTS

INTRODUCTION

RAMPAGE HISTORY

RAMPAGE PROTOTYPE ARCHITEC~VRE

DEEP SPACE 1 : DEPLOYMENT OF RAMPAGE

RAMPAGE PRODUCTION SYSTEM

RAMPAGE SYSTEM DEPLOYMENT

CONCLUSION

1 .O INTRODUCTION

In today’s increasingly complicated missions, spacecraft,
and instrument engineers, science investigators, and flight

Ted E. Specht
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 9 1 109

Ted.E.Specht@,iPl.nasa.gov
818-354-9645

controllers depend upon reliable displays and analysis tools
to utilize engineering data. There are various forms of
engineering data displays available; however, host
configurations that are required to maintain these displays
represent a significant expense to the users. In addition to
the increased computing environment costs, are restrictions
associated with control of mission data within the security
restrictions, i.e., known as the “firewall”. These displays
meet the minimum requirement for those who reside in the
Mission Support Areas (MSAs) behind the firewall; but do
not provide enhanced visual or analytical capabilities
needed for the growing number of missions expected
beyond 2000. Moreover, these displays require UNIX
workstations and project specific network connections.
Yet, there are a number of scientists and engineers outside
of Jet Propulsion Laboratory that require access to monitor
their instruments health and status in order to plan their
activities. As the number of missions are increasing, while
the development and mission operations budgets are
decreasing, the need for platform independent display and
analysis software allowing remote access is escalating. To
meet this demand, the Remote Access Multi-mission
Processing and Analysis Ground Environment
(RAMPAGE) subsystem is developed.

2.0 RAMPAGE HISTORY

Spacecraft missions at JPL receive engineering data in the
telemetry stream containing measurements taken at a
specific instance in time. These measurements are referred
to as state representations. Mission analysts determine the
health of the spacecraft by observing these state
representations. In an effort to facilitate mission analysts,
RAMPAGE was developed as a tool for acquiring and
viewing state representations in near real time.

RAMPAGE was originally developed to test the concept of

’ The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

mailto:Younrr.H.Lee@,ipl.nasa.gov
mailto:Ted.E.Specht@,iPl.nasa.gov

web based mission operations for the Galileo mission. The
original prototype of RAMPAGE was assembled from
several existing Galileo applications. After Galileo's
budget was cut drastically, RAMPAGE was ported to the
DS1 and Cassini missions.

3 .O RAMPAGE PROTOTYPE ARCHITECTURE

RAMPAGE was initially developed using "n" tier
clienuserver architecture. The main RAMPAGE server
reads state representations and their time tags in the
telemetry data stream and formats them into predefined
tabular andor plot pages. The reformatted results are
stored as ASCII strings in shared memory.

The Tabular Display Builder process accesses shared
memory where the state representations and their times are
contained, wraps strings with Hyper Text Markup
Language (HTML) tags, and writes the result to a disk file
which corresponds to a Uniform Resource Locator (URL).

The Plot Display Builder process reads the shared memory
segment where a list of state representations and times for
states to be plotted are contained, plots these values, and
converts these output into a Graphics Interchange Format
(GIF) image file. Then, they are embedded in HTML
formatted file which correspond to a URL.

The HTML files used client pull to refresh the page at
different intervals according to the mission telemetry rate
and the type of display plot or tabular. The HTML files
were accessible using a Hyper Text Transfer Protocol
(HTTP) serve?. Mission support personnel could access
the output of RAMPAGE using freely available web
browsers.

Figure 1 W A G E Prototype Architecture

Apache server for DS1 and Netscape Enterprise server for
Cassini.

4.0 DEEP SPACE 1: DEPLOYMENT OF RAMPAGE

In October 1997, the DS1 mission made a commitment to
use RAMPAGE for distributed operations rather than
requiring remote users (i.e., Primary Investigators) to
deploy Advanced Multimission Mission Operations
Systems (AMMOS) workstations along with leased
dedicated lines. This decision by DS1 placed pressure on
RAMPAGE to become completely reliable, which
warranted some new features to attain this high degree of
availability. As a result, the following capabilities got
implemented (1) constant status updates of the telemetry
flow, (2) ability to restart RAMPAGE processes
automatically if they were stopped via cron jobs, (3) email
notification to specified operators if RAMPAGE was
restarted, and (4) creation of HTML forms linked to
Common Gateway Interface (CGI) scripts to perform all
necessary maintenance on the configuration of
RAMPAGE.

Although companies partnering with JPL required local
access to data files that were created during DS1 spacecraft
telemetry downlink, JPL couldn't afford to provide
AMMOS workstations. Thus, the use of RAMPAGE
became very attractive to both JPL and remote engineers.
In order to meet this need of telemetry data access, HTML
forms and corresponding CGI scripts were created so that
RAMPAGE was able to query data from the DS1 mission
data server which is located behind the firewall. Then, the
results of the query were delivered to the query requestor's
local computer for further processing.

Initially, RAMPAGE was deployed behind a firewall to
meet JPL's security concerns and constraints. However,
due to firewall configuration issues such as firewall
filtering of all JavaScript pages, the operability of
RAMPAGE was greatly hampered.

Lessons Learned

The use of W A G E excited DS1 project users, who
were located at JPL as well as remote sites. These users'
responses with wide participation from remote sites,
RAMPAGE was able to successfully demonstrate its ability
of allowing users at any location to participate in accessing
mission information by using a simple user interface on
any platform. Spacecraft support personnel could stay
home on weekends instead of travelling to JPL during the
system testing. For instance, analysts at Spectrum Astro
were able to track the performance of their Ion Propulsion
System from their normal work locations and their homes
during weekends.

One of the RAMPAGE success factors stems from seeking
out suggestions and feedback from potential users and
incorporating them into RAMPAGE development.
However, it also became obvious that .RAMPAGE had

some limitations that needed to be reengineered in order to
increase its capabilities to support hture JPL missions.
These limitations were: (1) the usage of shared memory
limited the scalability of RAMPAGE, (2) only 80 tabular
displays and 20 plots were supported, (3) the plots
consisted of GIF images, which, because of their size, are
slow to download over modems, (4) new display types
were hard to implement, and (4) firewall issues need to be
addressed. To overcome above-mentioned observed
limitations, the redesign of RAMPAGE became essential.

5.0 RAMPAGE PRODUCTION SYSTEM

Architecture

In redesigning RAMPAGE, it was recognized that the
ability to embrace new technologies without rendering
major rewrites of the core software was necessary. Past
experience has shown that each project also requires some
mission specific capabilities. To provide the flexibility to
meet these mission demands, an object-oriented framework
was designed. Objects within modules can be replaced with
minimal impact on any other modules within RAMPAGE.
An additional benefit of this modular approach is load
balancing - modules can be assigned to specific processors
on a multiprocessor machine or the modules can be run on
multiple workstations when the demand becomes too high.
In the challenging atmosphere of a Faster Better Cheaper
environment at JPL, it becomes almost mandatory to
employ an iterative rapid prototyping approach along with
concurrent engineering. These approaches also provide
opportunities to solicit customer feedback before the final
delivery is made. For example, the decision of using either
Java Remote Method Invocation (M I) or Common Object
Request Broker Architecture (CORBA) was needed. Based
on the following criteria, RMI was selected (1) RMI
presents less overhead than CORBA and (2) all
RAMPAGE server applications were written in Java;
whereas, CORBA appears to offer more benefits in a
mixed language environment.

To address security, RAMPAGE requires all server
processes to be deployed behind the JPL Gauntlet firewall
with HTTP proxies running on the firewall. To avoid
firewall conflicts, remote client access to servers is limited
to HTTP protocol and Java RMI is performed only within
the firewall. Password authentication is also used to limit
external access to each mission’s web servers and
passwords can be added to any web pages or directories
that require additional restrictions. On the client side
security is addressed by the fact that Applets from JPL can
be trusted. Moreover, the Java Virtual Machine sandbox
will provide an additional degree of protection.

I M P L E W T A l l O N

RAMPAGE still requires files containing mission specific

attributes that were inherited from the legacy systems. In
the past, these files were kept locally on each mission
specific workstation. Now, RAMPAGE has placed all of
these mission parameters on a single server. To make these
parameters available for processing by RAMPAGE, a SUN
UltraSparc 60 server was dedicated to run mySQL
database. The “mm” Java Data Base Connectivity (JDBC)
driver is used as the Java Application Programming
Interface (API).

The mission telemetry rates preclude using the database to
store state representations extracted from the telemetry. In
order to process the telemetry data efficiently, a cache
process was developed whose main purpose was to buffer
telemetry data as it flowed from upstream. Therefore, a
cache process for each mission was implemented to avoid
intermingling of data. If performance becomes an issue,
several cache processes can support a single mission. This
cache contains only representations of states that are
included in a mission display configuration file. The cache
consists of lists of measurements and the times
corresponding to those measurements. Usually, there are 3
times associated with each measurement: the Spacecraft
Event Time (SCET), the Spacecraft clock (SCLK), and the
Earth Received Time (ERT). RMI was used as an interface
between this process and the other RAMPAGE display
applications.

One new display application RAMPAGE has incorporated
into this production system is a 3-D graphics. It was
intended as a mission planning tool, but was adapted as a
spacecraft attitude display tool. This adaptation, which is
called FastGraphX, consists of a server providing body
position data from JPL Spacecraft Planet Kernel (SPK) and
a client that renders graphics.

The FastGraphX server retrieves the attitude data for each
mission from the mission cache process, where the server
interface to the mission cache process is implemented
using Java M I . This attitude data is passed to the
FastGraphX client in the form of a quaternion. The server
interface to the client is implemented by using HTTP
transfer of specially formatted data files. These data files
contain all body positions required by the client to build
the display.

The client side of FastGraphX renders the data in a
spacecraft centric view and allows the user to display
various attributes such as direction vectors to user specified
bodies. The user can modify the view by using the mouse
or other User Interface elements. Some of the basic
features of this display are:

0 Accurate attitude representation
0 Accurate lighting
0 Correct position of other bodies (Sun, Earth, etc.)
0 User selectable display content.
0 Direction Vectors.

0 Predicted versus actual attitude
0 Coordinate Axis
0 Tabular data (times, distances, etc.)
0 Real star map
0 Real time modification of the view via mouse or

User Interface
0 Regular display updates based on telemetry
0 Realistic CAD models of spacecraft

The FastGraphX client consists of native compiled binary
code and has been ported to SUNS, SGIs, HPs and PCs
running Windows NT.

Figure 3 FastGraphX Architecture

A second display application provided by RAMPAGE is
the Display and Data Formatter process in response to port
old displays that are provided by the legacy systems.
Currently, 3 types of displays were identified that
RAMPAGE was required to support: tabular displays,
plots, and fixed page displays. Fixed page displays are
similar to tabular displays, but they provide the capability
of additional ASCII fields. A new type of display, a
schematic display, is part of the redesign effort to show

spacecraft subsystem elements, their relationships and their
current state representation.

To reduce development cycle time and cost, a
Commercial- Off-The-Shelf (COTS) software package was
considered to address the graphics needs for this task . The
Generic Logic Toolkit was selected as the graphics builder
COTS tool for RAMPAGE. GLG Toolkit met the
following criteria set by RAMPAGE:

GLG Toolkit generates web based cross platform
graphics in the form of Java Applets

0 These graphics were capable of emulating the
legacy displays

0 GLG Toolkit is capable of creating more
advanced displays such as spacecraft subsystem
schematics

0 Data required to drive the graphics is ASCII or
compressed ASCII instead of GIF files
Interface to the package is modular, easy to snap
in or out

The Display and Data Formatter server process queries the
database for display formats and any state specific
parameters at startup and uses these parameters to build
display templates. The server then uses the mission cache
process as a source of state representations. The Display
and Data Formatter server process spawns a thread for each
remote user request. The thread contains all session data
and all display parameters required for building the
selected display. At specific intervals, the Display and Data
Formatter server queries the mission cache for the state
representations that are required to build the display and
the client's display is updated by a push from the server.

The client side of the Display and Data Formatter is a web
browser that loads an applet selected from a list of
predefined display applets. These predefined displays are
built using the GLG Toolkit. They can be built by someone
with extensive knowledge of the mission or by someone
designated to build the displays based on requests from
mission personnel.

Figure 4 Display and Data Formatter Architecture

To gain wide user support and participation in the testing
of RAMPAGE, each mission's URL is advertised to the
current and potential users. This approach promotes
RAMPAGE acceptance by the users while addressing
training needs. In order to obtain a high degree of
confidence from the mission management, especially
flying missions, new results are verified against the
existing systems output through side by side comparison.

6.0 RAMPAGE SYSTEM DEPLOYMENT

The first customer of the production version of RAMPAGE
will be the Mars01 project. However, Mars01 has added
several requirements to RAMPAGE to include web based
data management capabilities. The project had already
deployed a file management system and wanted to add a
web interface to allow remote users' access to their file
management system. The current file management system
is to be Network File System (NFS) mounted to the
mission HTTP server(s). Presently, extensive performance
testing is required to determine if this configuration is
adequate. One alternative is to run an HTTP server on the
file management server host. In addition, the project
wanted to use Secure Socket Layer (SSL) capability to
enhance their web sites security.

Past experience with other projects had proven the
feasibility of using HTTP to move and organize files with
certain limitations. If remote users wanted to upload files
from their local host to the mission file management
system, using HTTP 2 methods were provided.

1. Use a Netscape Version 2.0 or greater browser for
manual uploads. This approach requires an HTML
form linked to a CGI script that will store the file
on the server.

2. Use of libwww library from the World Wide Web
consortium to automate uploads. This approach
requires the C or PERL library to be installed on
the remote machine and a program or script then
calls the necessary methods to perform the file

upload to the server.

Providing links to the directories containing the mission
data files allows downloading of data using a web browser.
Since these directories have no index file, the HTTP server
is configured to provide Fancy Indexing. This
configuration allows remote users to view all of the files in
the directory as hypertext links, which can be clicked to
transfer the data to the remote user host.

An additional requirement for the Mars01 mission to
RAMPAGE is the creation of standing queries through a
cron job that request data from the mission data server.
Remote users will subscribe to the data they need and
provide an email address for notification when a query has
been executed. The query is triggered at a specific time
and the data is placed in the file management system
according to the parameters in the query. Once the query is
complete, an email is sent to all users who have subscribed
to the query. The email will contain hypertext links to the
files created by the standing query. The standing queries
must also remove any files over 14 days old to prevent the
disk from filling up with outdated files.

The requirement to use SSL resulted in the purchase of the
Netscape FastTrack HTTP server. The Apache server could
be configured with additional modules to perform SSL but
purchase of a product with the SSL capability built in was
more desirable. Purchase has been made and its
configuration has been implemented. Now, testing has to
be performed to verify the effect on system performance.

7.0 CONCLUSION

Based on lessons learned from supporting multi-mission
ground data systems at JPL, the following trends are
observed and predicted:

Analysts will support multiple mission, each
mission could be in a different phase (Planning,
Assembly, Test, and Launch Operations [ATLO],
test, launch, cruise, and/or encounter).

0 Analysts will require visualization and analysis
tools to utilize historical data.

0 Analysts will demand integrated information for
correlation and interpretation of state or status of
the system.

0 Analysts will require easy access to mission data
regardless of location and platform.

0 Analysts will need ability to analyze data quickly
and intuitively.

0 Mission requires low cost, low risk and responsive
systems.

With those trends in mind, the RAMPAGE system is
designed to provide:

0 standard interfaces to end-user applications,
0 scalability, interoperability, and accessibility,

0 platform independence,
0 simplified tool and data distribution,

user customized displays, and
0 an integrated system environment for distributed

mission operations and science teams.

As a result of RAMPAGE implementation and
deployment, several foreseeable benefits are and can be
anticipated

0 Hardware cost reduction. (Costly workstations
replaced with multi-purpose utilization of Desktop
PCs and minimal system administration cost).

0 Reduction in project requirement for dedicated
landlines and workstations at remote sites.

0 Reduction in hardware maintenance cost
associated with workstation configurations at local
and remote sites.

Young H. Lee is an Advanced Multimission Operations
System (AMMOS) Multimission Ground Data System
(MGDS) system engineer and technical group supervisor
who is currently working Mars 01 project. In the past, she
has worked on Voyager, Magellan, Galileo, Mars
Observer, Mars Global Surveyor, Mars Climate Orbiter,
Mars Polar Lander, Stardust, and Deep Space 1 mission.
She has a MSMISfiom Claremont Graduate University and
currently working on her Doctorate Degree.

Ted Specht has worked on spacecraft ground data systems
at JPL for 16 years. During that time, he has worked on the
Deep Space Network, Voyager, Ulysses, Galileo, Cassini,
Deep Space 1, Mars01 and the Shuttle Radar Topography
Missions. He is currently devoted to implementing
RAMPAGE for fiture JPL missions.

